

CPR Basics from the ER

Based on RECOVER Guidelines (VECCS)

Presented by VEG St. Peters & Brentwood

Original slides provided by: Katie Williams, LVMT (VEG Franklin Nursing Trainer)

Desiree' Gardner, LVMT (VEG Franklin Nursing Manager)

Our Team: VEG Saint Louis

Gabby Jones, RVTNursing Manager
VEG St. Peters

Katie Groom, DVM
Medical Director
VEG Brentwood &St.
Peters

Hannah Fore, DVM Lead Doctor VEG St. Peters

Morgan Stoddard, DVM Lead Doctor VEG Brentwood

Why is CPR Training Important?

- CPR has a fairly low success rate in animals compared to humans
 - 2-10% of our veterinary patients achieve ROSC and even less survive to discharge
 - 20-25 % of humans survive to discharge
 - Anesthetic arrests have a higher success rate
- Build confidence and muscle memory
 - Every second counts delays or hesitations reduce the chance of positive outcome
 - High quality technique directly impacts our chance of achieving ROSC
- CPR training is important for ALL veterinary professionals

How many of you are working with teams who are CPR trained?

What is Needed for CPR?

- Breathing circuit with oxygen (Anesthesia Machine or Ambu bag)
- ECG
- IV Catheter, T-Port, and Tape
- Lots of Flush
- Capnograph
- Step stool
- RECOVER Algorithm and Drug Dosing Chart
- Emergency Drugs
- Stethoscope
- Laryngoscope, ET Tubes, and Tie
- Needles of various sizes
- Monitoring Sheet / Pen
- At least 4 people
- Psychological Safety

Top of Cart


- Defibrillator / ECG / Capnograph
- Portable Suction Unit
- Syringe Pump
- Fluid Pump
- Open Bag of Fluids with Set
- Slam Bag
- SPO2 Sensor
- Oxygen Muzzles

Airway Drawer (First Drawer)

- ET Tubes (single size)
- ET Tie
- Capnograph
- Laryngoscope
- Stylet
- Syringe for Cuff Inflation

Medication Drawer (Second Drawer)

- Epinephrine
- Atropine
- Naloxone
- Flumazenil
- Antisedan
- Lidocaine
- Furosemide
- Calcium Gluconate
- Dextrose
- Glycopyrrolate
- Albuterol Inhaler
- 10 ml flush
- Syringe/Needle
 - Insulin , 1ml , 3ml ,10ml

IV Access and O2 Mask (Third Drawer)

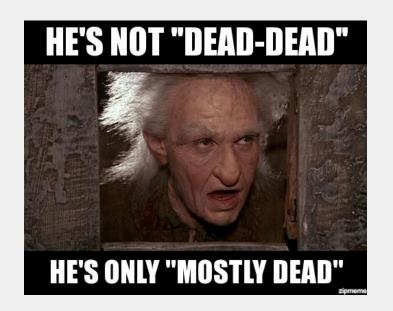
- IVC supplies
- Tourniquet
- Lactate Reader
- BG Reader
- O2 masks of various sizes
 - Some with diaphragm

Premade Kits (Fourth Drawer)

- EZ IO
- Centesis Kits
- Cut Down Kit
- Surgical Airway Kit
- Fenestrated Caths
- Sterile Gloves

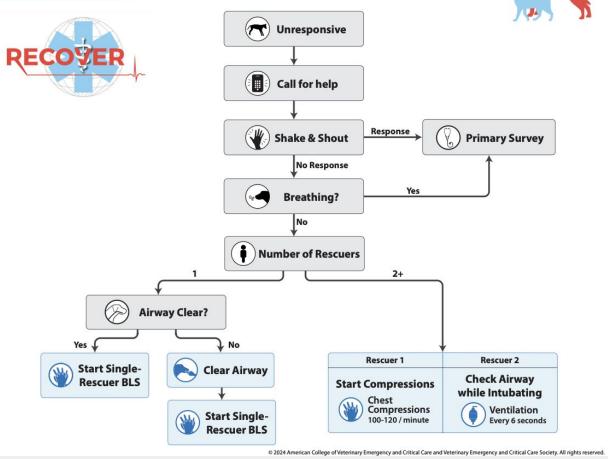
Ambu Bags and Misc (Fifth Drawer)

- Sterile Saline
- Hypertonic Saline
- Suction Supplies
- Ambu Bags
- Defibrillator External Paddle


Think About Your Hospital and Your Team...

- Do you have a crash cart / crash box?
- Where is it?
 - Does your team know where it is?
 - Is it stocked and ready to go? Who is responsible for checking it? Is there an inventory list?
 - Do you have one in surgery?
- Does your team know what to do when a code is called?
 - Have you had practice codes? How often?
- Are you empowering your team to take the lead in a code?

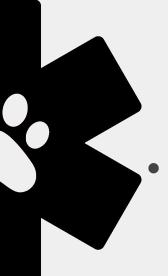
How Do I Know If My Patient Needs CPR?



Any Princess Bride Fans...

CPR Initial Assessment Algorithm

Different Types of "Arrest" Warranting CPR


- Respiratory Arrest: Breathing stops
 - Can occur due to drugs, smoke/water inhalation, other
- Cardiac Arrest: Only the heart stops
 - o Can occur due to drugs, anaphylaxis, disease, other
- Cardiopulmonary Arrest (Full Arrest): Breathing and Heart stop
 - Usually starts with respiratory arrest and progresses to full arrest

Assessment

- Shake & Shout
- Airway Rule out obstruction of the airway
- Breathing Determine if the patient is breathing or not
- Circulation Does my patient have a heartbeat/can I feel a pulse?
- Should take less than 10-15 seconds total

Still Unsure CPR is Warranted?

Start compressions!

- Studies have shown starting chest compressions immediately (even before confirming loss of pulses) dramatically improves success
- There is a low chance that you will cause permanent damage by starting compressions (as long as they are appropriate compressions) even if the patient does not need them
 - Temporary damage can include pulmonary contusions, pneumothorax, and broken ribs

Going through the Algorithm

Start Basic Life Support - BLS → Two minutes of chest compressions with ventilation every 6 seconds

Start Advanced Life Support - ALS → Attach ECG, EtCO2, IV access, drug reversals

Going through the Algorithm

Pulse and Check → palpate pulses and evaluate ECG for rhythm diagnosis

- If asystole/PEA→ resume compressions and breathing.
- Atropine ONCE at the beginning
- Low dose epinephrine every OTHER cycle

- If Vfib/pulseless vtach (shockable rhythm)→ resume compressions and breathing.
- Charge defibrillator then pause to shock
- RESTART compressions and breathing for 2 minutes

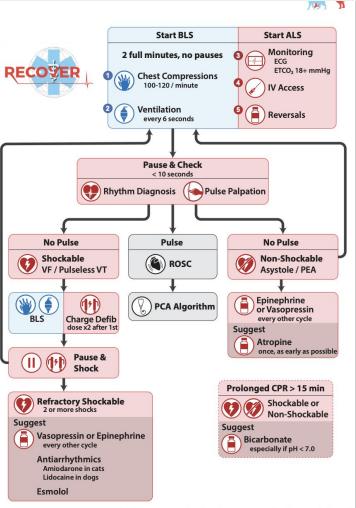
When Do Most Codes Occur in General Practices?

- Most likely during anesthetic procedures
 - What are the common pre-medications that you guys give pre-op?
 - Know your reversals!
 - Does anyone know when during anesthetic procedures a patient is *most* likely to code?
- Other less common occurrences in general practice:
 - Walk in emergency appointment
 - Older patients with heart disease
 - Seizure/neurologic patients
- Has anyone seen / helped during a code here? What were the circumstances?

Common Reversal Drugs

- Atipamezole (Antisedan)
 - Dexmedetomidine (Dexdomitor)
 - 100mcg/kg IV
- Naloxone (Narcan)
 - Opioids (Fentanyl, Hydromorphone, Methadone, Butorphanol, Morphine)
 - 0.04mg/kg SC, IM, IC, IO
 - **SC or IM doses can be delayed up to 5 minutes
- Flumazenil
 - Diazepam or Midazolam
 - 0.01mg/kg IV start at low end

Once a Code is Called....



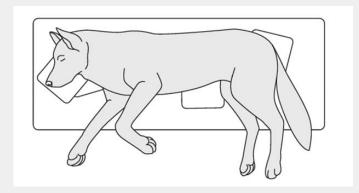
Circulation, Airway and Breathing

C = CIRCULATION / COMPRESSIONS

Chest Compressions

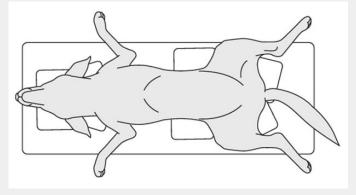
Ideal rate 100-120 bpm

- < 100 bpm = low BP, low perfusion</p>
- > 120 bpm = heart unable to fill properly, low stroke volume


• 2 Minute Cycles of Compressions

- It can take up to 1 full minute of compressions for blood flow to reach constant, steady state
- Should chest compressions ever be stopped during a cycle of BLS just to evaluate the ECG?

Patient Positioning + Considerations



Lateral Recumbency

Should compress about ½ - ⅓ the width of the chest in lateral recumbency

Dorsal Recumbency of wide chested dogs

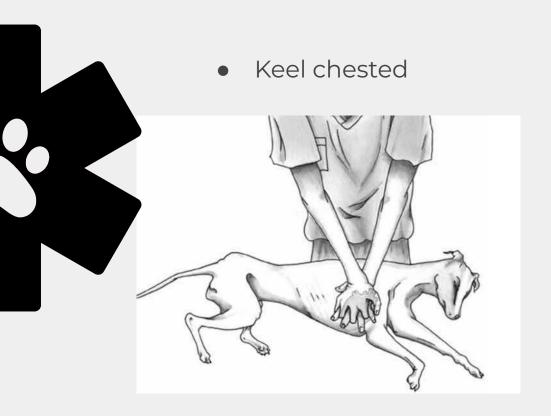
Should compress about 1/4 the width of the chest in dorsal recumbency

Chest Compression Techniques

Cardiac Pump Technique

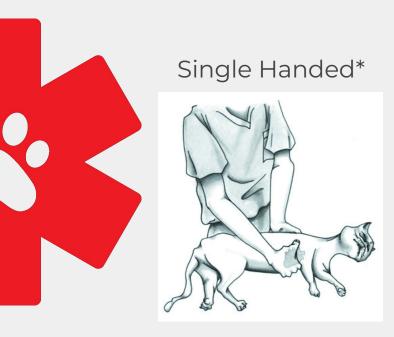
- Compressions directly over the heart
- Small dogs or cats, keel chested dogs
- Bend elbow back and compress
 where elbow lies over chest
 - Two handed approach should not be used in small dogs or cats
- Theory: The blood flow from the heart is from directly compressing the ventricles

Chest Compression Techniques



Thoracic Pump Technique

- Compressions over the widest part of the chest
- Wide chested or barrel chested dogs
- Theory: The compressions raise the overall pressure in the thoracic cavity and pushes blood from the aorta into circulation


Chest Compression Techniques

Round chested

Compression Form Options

Two Handed, Dorsal Recumbency

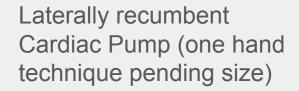
Good Form - Good Compressions

- Elevate yourself above the patient with their back closest to you
- Hand over hand
- Shoulders positioned directly above your hands
- Elbows locked, compressing with the core muscles, bending at the waist
- Driving your compressions through the heel of your hand
- The exception to the locked elbows is when performing single handed compressions
- Don't lean on the patient

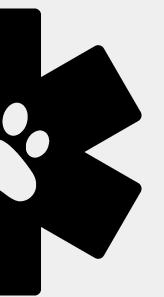
Compression Songs (100 - 120 bpm)

- Pink Pony Club by Chappell Roan (107 bpm)
- Stayin' Alive by the Bee Gees (104 bpm)
- Another One Bites The Dust by Queen (110 bpm)
- Eye of the Tiger by Survivor (108 bpm)
- Stronger by Britney Spears (108 bpm)
- Everybody (Backstreet's Back) by The Backstreet Boys (108 bpm)
- Set Fire to the Rain by Adele (108 bpm)

Let's Practice!



Laterally recumbent Cardiac Pump


Laterally recumbent Thoracic Pump

Dorsally recumbent Thoracic Pump



Laterally recumbent
Cardiac OR Thoracic Pump - Assess EtCO2
and adjust as needed

A = AIRWAY

3 Ways to Support an Airway

- Intubation
- Face Mask
- Mouth to Snout
- Less commonly cricothyrotomy for upper airway obstructions

Intubation is the Most Effective

Advantages:

- Prevents aspiration
- Allows for more effective ventilation and monitoring of ETCO2

Considerations:

- Should be performed quickly and by someone trained/confident
- Do not delay chest compressions to attempt placement

Face Mask

A tight fitting mask attached to an ambu bag or anesthetic machine

Advantages:

- Less complicated than intubation
- Good option if intubation is delayed or not possible
 - Airway inflammation, Tracheal FB, Rigor
- Essential for some small mammal CPR
 - Chinchilla, rabbit, hamster (obligate nasal breathers)

Considerations:

- High flow rates as essential (4-8L/min)
- Requires good seal to be effective

Mouth to Snout ... Better Than Nothing!

Technique:

- Close animals mouth
- Extend neck to open airway
- Place your mouth over the nostrils and blow until chest rises
- Provide 2 breaths every 30 compressions (if alone) or every 6
 seconds (if there are multiple rescuers)

Considerations:

- May not be effective for brachycephalic breeds with stenotic nares
- Less effective in general
- Higher risk of gastric inflation
- Best as a temporary measure outside of the clinic

Additional Airway Notes

- Ambu bag is preferred over an anesthesia machine due to less dead space in the tubing and less ventilation resistance; however, if you only have an anesthesia machine:
 - Be sure to detach patient and flush circuit of anesthetic gas replacing with fresh O2

DO NOT USE FLUSH VALVE WHEN ATTACHED TO PATIENT

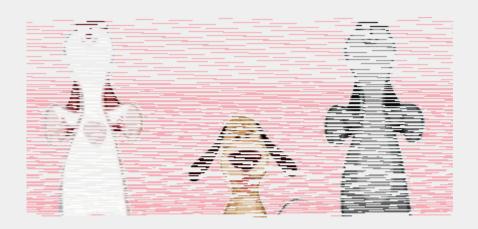
B = BREATHING

Breathing Basics

- Ideal rate of breathing: 10 bpm (every 6 seconds) with a pressure of about 30-40 cm H_2 0
 - Hypoventilation = poor oxygen perfusion to vital organs
 - Hyperventilation = poor oxygen perfusion to heart muscles and brain, low EtCO₂
 - CO2 is potent vasodilator!
 - CPP = MAP ICP
- Breaths should be a quick squeeze of the ambu bag / reservoir bag
- Patient's neck should be extended for adequate breathing
- EtCO₂ should be 18 mmHg minimum during CPR
 - Proper ET tube placement can be confirmed with EtCO₂ > 12 mmHg
 - If suddenly increases >10 mmHg, possibility of ROSC
 - Remember that EtCO₂ actually has NOTHING to do with breathing for your patient and EVERYTHING to do with current circulation

End Tidal CO2 Basics

- When cells use oxygen and glucose for metabolism, one of the byproducts is CO₂
- Indicator of ventilation, metabolism, and perfusion
- End Tidal Carbon Dioxide (EtCO₂) = CO_2 level at the end of an exhaled breath
- EtCO₂ considered to be one of the best indicators of effectiveness of CPR efforts (chest compression efficiency and CO)
 - As cardiac output increases due to good chest compressions and adequate ventilation, or R.O.S.C., more CO₂ is returned to the lungs and exhaled, so EtCO₂ increases
 - As cardiac output decreases due to poor compressions and/or inadequate ventilation, less CO₂ is returned to the lungs and exhaled, so EtCO₂ decreases
 - What about trends?


Interpreting End Tidal CO2 During CPR

- The EtCO₂ reflects the amount of blood returning from the tissues to the lungs
 - \circ Higher cardiac output = Normal to high end normal EtCO₂
 - Lower cardiac output = Lower EtCO₂
- EtCO₂ can be interpreted at any time during CPR, including during chest compressions, as
 it is not susceptible to artifact due to motion (like the ECG)
- Increased minute ventilation (RR > 10 rpm and/or too large of large tidal volumes) will decrease EtCO₂, even if chest compressions are being done correctly.
 - In order to use EtCO₂ as a measure of chest compression efficacy, ventilation must
 be delivered consistently at a rate of 10 bpm as described in the BLS algorithm.
- Sudden increase in EtCO₂ by > 10 mmHg = check for ROSC
- Troubleshooting EtCO₂?

CPR Roles, Cycles, and Drug Administration

Common Roles During CPR

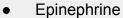
Ideally a minimum of 4 people to run a code

- Person 1 Person running the code/Lead
- Person 2 Chest compressions
- Person 3 Airway/ventilator
- Person 4 Recorder

Ideally your Lead and Recorder stay in their roles. Those in charge of chest compressions and airway rotate back and forth.

 Other tasks split between team - IVC placement, emergency drugs, client communication, runner

Who Orders and Gives the Drugs?



- Sometimes, the DVM on the case will be present and will give orders
 - But what if they are not?
- Nurses, you're up! Use the RECOVER drug dosing chart
 - o If your DVM is busy, you are that patient's first line of defense
 - These are your written medical orders until your DVM comes back
 - Empower your nursing staff! This is why CPR training and practice is SO
 IMPORTANT!

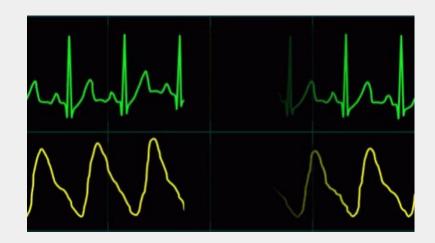
You Don't
Have
to Be
a Doctor

Common Emergency Drugs

- Potent vasoconstrictor to shunt blood to core organs
 - Dose: 0.01mg/kg IV
- Atropine
 - Increases heart rate, decreases vagal tone
 - Dose: 0.04-0.05mg/kg IV
- Lidocaine
 - Antiarrhythmic used during shockable rhythms
 - Dogs: 2mg/kg IV
- Reversals
 - Atipamezole (Antisedan)
 - Dexmedetomidine (Dexdomitor)
 - Dose:
 - Usually same # of mls as dexmed, or 0.1mg/kg IV
 - Remember IM has less perfusion and is likely to not be as effective
 - Naloxone (Narcan)
 - Opioids (Fentanyl, Hydromorphone, Methadone, Butorphanol, Morphine)
 - Dose: 0.04mg/kg IV
 - o Flumazenil
 - Diazepam or Midazolam
 - Dose: 0.01mg/kg IV
- Flushing 10-20mls for each medication (dogs), 5mls for cat

When Do We Give These Drugs?

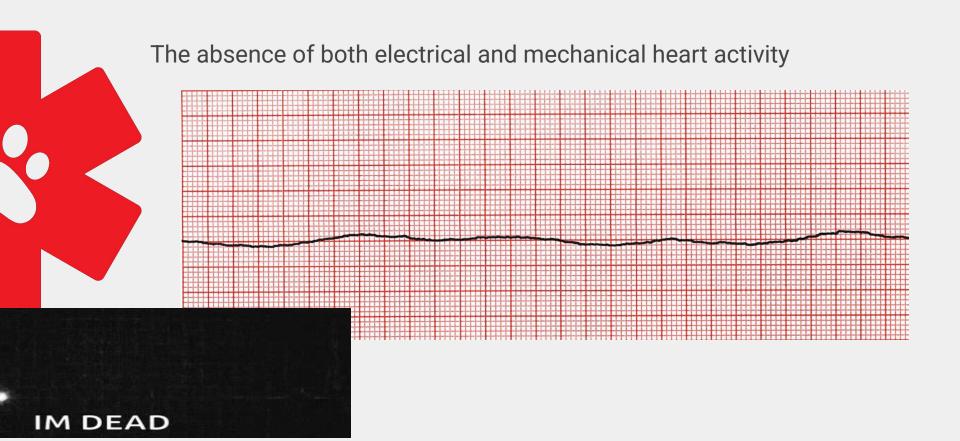
- Remember, CPR Cycles are 2 Minutes each
- Always reverse your drugs if possible!
- Epinephrine
 - Low dose (0.01mg/kg) administer every 3-5 minutes (every other cycle, once administered)
 - High dose is no longer recommended
- Atropine
 - Administer once (0.04 mg/kg) if vagally mediated code is possible, no longer recommended to redose
 - If given, should be administered as early as possible for patients with non-shockable arrest rhythms
 - Decreases vagal tone


After Each 2 Minute CPR Cycle:

Check your ECG

Check your Capnograph

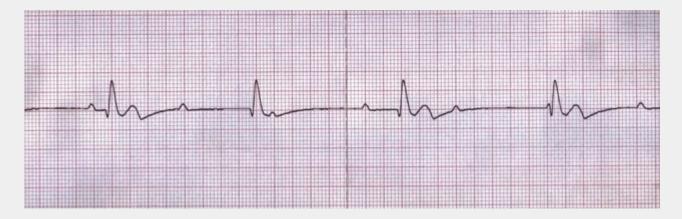
- Auscultate and Evaluate Breathing
- None of the Above?


Normal Sinus Rhythm

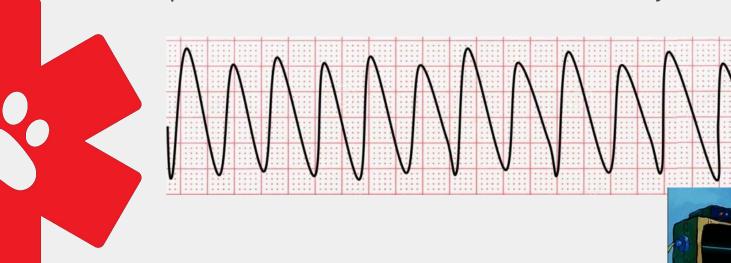
Typical, normal rhythm; both electrical and mechanical heart activity are present

Asystole

Pulseless Electrical Activity (PEA)



The presence of electrical activity, but absence of mechanical heart activity


Presentation can vary

Rate is < 200

Ventricular Fibrillation

The presence of electrical and mechanical activity, but uncoordinated

Shockable rhythm

Pulseless Ventricular Tachycardia

Unstable arrhythmia originating from ventricles, rate >200 bpm

Pulseless V-tach is a shockable rhythm

Additional Considerations

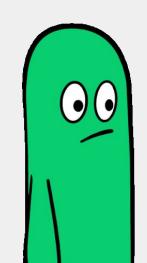
Closed Loop Communication Is Key!

- A request is made by leader or DVM and the person receiving the request repeats it back to them
- Provides more accurate/efficient care
- Prevents communication errors
- Prevents multiple people from doing the same task (similar to "calling the ball" in a sport)

Alternative Drug Admin Routes

- (Naloxone , Atropine , Vasopressin , Epinephrine , Lidocaine)
- May be considered when IV access has not been established
- Not effective; requires increased dosing and dilution
- Remember, absorption of these drugs require perfusion
 - Dead patient = no perfusion = IM administration of medications is not effective!

Intraosseous Catheters


- Quick and easy
- o EZ IO Gun
- Can deliver emergency drugs , fluids , blood products
 - Can also check BG, Lactate, blood type on aspirate

How long do we run the code?

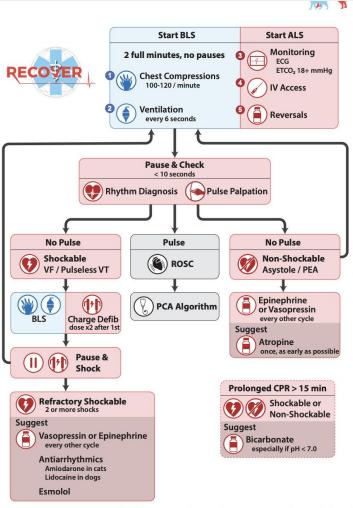

- No right or wrong answer
- Communication is key
 - Owner wishes
 - Prognosis
- Consider length of resuscitation
 - >15 min is considered prolonged CPR
 - Permanent brain damage and other serious ischemic injury

After the Code: If ROSC is Achieved

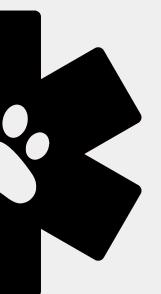
- Alert the owner as soon as possible
- Have someone monitor the patient until instructed otherwise by a DVM
- Be prepared for another arrest
 - Hands on your patient! Don't rely on ecg!
- Be prepared for the owner to elect euthanasia
 - Prognosis survival to discharge
- Debrief

If CPR is Not Successful ...

- Take a moment to grieve
- Try to remember the low success rate of CPR in veterinary medicine
- Debrief as soon as possible
 - Not the time for harsh critiques or finger-pointing


Debriefing after a code

- Not the time for harsh critiques or finger-pointing
- Reflect with the team on how things went
 - Communication
 - Team work
- Be open and honest to improve for next time



	The same	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
	DRUG	DOSE	mL	mL	mL	mL	mL	mL	mL	mL	mL	mL	mL
Arrest	Epinephrine (1:1000; 1mg/mL)	0.01 mg/kg	0.03	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
	Vasopressin (20 U/mL)	0.8 U/kg	0.1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
	Atropine (0.4 - 0.54 mg/mL)	~ 0.05 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
Anti- Arrhythmic	Amiodarone (50 mg/mL)	5 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	Lidocaine (20 mg/mL)	2 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	Esmolol* (10 mg/mL)	0.5 mg/kg	0.13	0.25	0.5	0.75	1	1.3	1.5	1.8	2	2.3	2.5
Reversal	Naloxone (0.4 mg/mL)	0.04 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	Flumazenil (0.1 mg/mL)	0.01 mg/kg	0.25	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	Atipamezole (5 mg/mL)	100 μg/kg	0.06	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Monophasic Defibrillation	External Defib (J)	4 - 6 J/kg	10 J	20 J	40 J	60 J	80 J	100 J	120 J	140 J	160 J	180 J	200 J
	Internal Defib (J)	0.5 - 1 J/kg	2 J	3 J	5 J	8 J	10 J	15 J	15 J	20 J	20	20 J	25 J
*Adminis	ster esmolol 0.5 mg/kg IV er 3-5 minutes followed	Weight (kg)	2.5	5	10	15	20	25	30	35	40	45	50
by a CR	at 50 mcg/kg/min												

Additional Resources

RECOVER Initiative Website

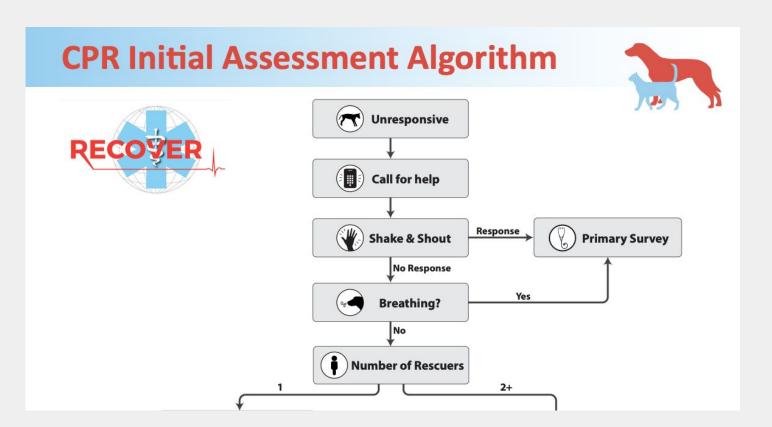
RECOVER App

Any Questions?

Quick Break...

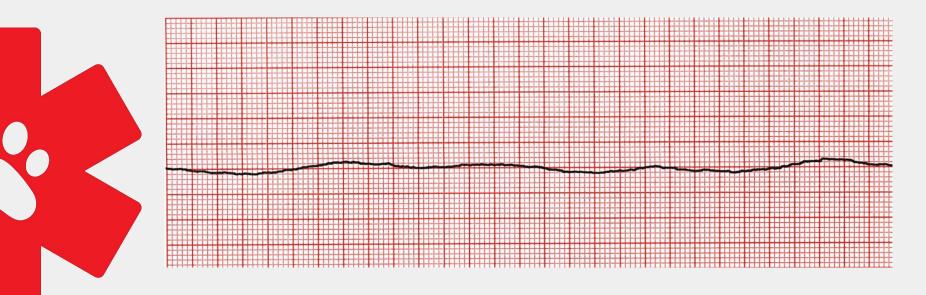
Then Let's Practice!

Suzie

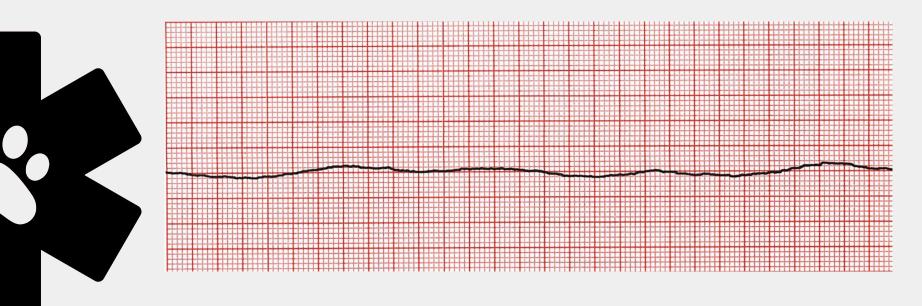


- Suzie is a 5 year old beagle that weighs 25lbs
- She came in for routine vaccinations and exam
- While your nurse is drawing blood she goes into cardiac and respiratory arrest.
- What do you do first?

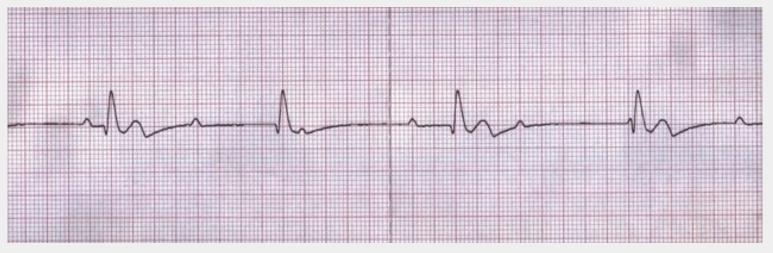
Suzie



Primary Survey of Suzie

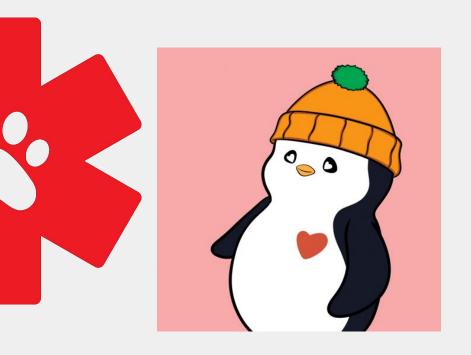

- There are no signs of breathing
- You cannot feel or hear a heartbeat
- What now?

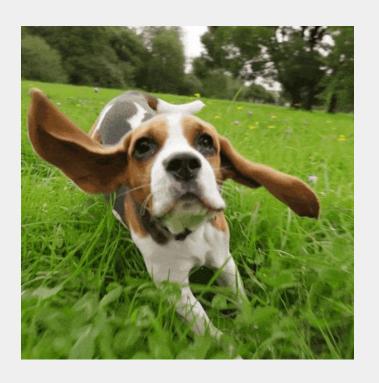
Start BLS	Start ALS					
2 full minutes, no pauses	Monitoring ECG					
Chest Compressions 100-120 / minute	ETCO₂ 18+ mmHg IV Access					
Ventilation every 6 seconds	6 Reversals					



EtCO2: 8 mmHg, ECG: 0 bpm RR: 0 rpm, Pulses not palpable

EtCO2: 20 mmHg, ECG: 0 bpm RR: 0 rpm, Pulses not palpable




EtCO2: 18 mmHg, ECG: 0 bpm RR: 0 rpm, Pulses not palpable

RR: 30 rpm, Pulses palpable

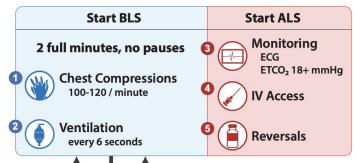
You did it!!

Scout

- Scout is a 7 year old MN GSP and he weighs 63 lb
- His surgery was rocky and you battled his hypotension and hypothermia
- He was given hydromorphone as a premedication prior to induction
- You've extubated him and he is breathing well so you decide to go grab heat support

You move quickly, but when you return, you notice he is not breathing and this is is ECG

EtCO2: 20 mmHg, ECG: 30 bpm


RR: 0 rpm, Pulses thready

You go to pull up naloxone and his ECG changed to this - now what?

EtCO2: 15 mmHg, ECG: 0 bpm RR: 0 rpm, Pulses not palpable

ECG

EtCO2: 30 mmHg, ECG: 80 bpm RR: 30 rpm, Pulses palpable

Questions?

