OUCH!! What is a Pain?

Andrew Claude DVM DACVAA cVMA claudea@oregonstate.edu

Who am I??

- Graduated from Iowa State University College of Veterinary Medicine in 1992
- General practice for 13 years (variety of stuff)
- Internship and residency at Iowa State University College of Veterinary Medicine 2005 – 2009
- Mississippi State University College of Veterinary Medicine as Service Chief of Anesthesiology from 2009 – 2016.
- Michigan State University College of Veterinary Medicine Staff Supervisor and Service Chief 2016 – 2022
- Currently Associate Professor Anesthesiology at Oregon State University College of Veterinary Medicine

Goals of this discussion

- 1. Physiology of normal pain
- 2. Concepts and misconceptions of analgesia and anesthesia
- 3. Pathophysiology of abnormal pain
- 4. Preventive analgesia for the veterinary practitioner

- Analgesia
 - Absents of pain
 - Absents of nociception?
- Analgesics
 - Modality that helps decrease pain
 - Modality that helps decrease the process of nociception

- Anesthesia
 - Loss of all afferent sensory input locally, regionally, or generally.

In Vet Med we tend to confuse general anesthesia with analgesia

Pain Vs. Nociception

• Pain

- "an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage."
- Somatosensory + emotional/behavioral response to nociception.
- Tends to be over emphasized, which is a good/bad thing...

Nociception

- The neurophysiological process whereby noxious mechanical, chemical, or thermal stimuli are transduced into electrical signals (action potentials) by high-threshold nociceptors. These action potentials follow a series of pathways that ultimately end in the brain
- Tends to be under emphasized which is a bad thing...

Five physiological steps of nociception

- 1. Transduction
- 2. Transmission
- 3. Primary modulation/segmental modulation
- 4. Projection
- 5. Perception/suprasegmental modulation

Process of nociception

- Transduction
 - Aβ, Aδ, c-Fibers, silent,
- Transmission
 - Dorsal horn, CNS
- Primary (segmental) modulation
 - Segmental reflexes
- Projection
- Perception (supra-seg modulation)
 - Conscious (pain, memory, emotions avoidance)
 - Unconscious (ANS, PAG)
- Humans/animals

Perceptio

Transduction

- Many subclasses of nociceptors with mechanical versions being the most prominent but least understood.
- A- δ fibers
 - Myelinated, thin
 - Rapid, quick noxious sensory
- C-fibers
 - Unmyelinated, very thin
 - Throbbing, slow noxious sensory
- Silent fibers
 - Inactive C-fibers
- A- ß fibers
 - Tactile sensory
 - Can be recruited -> C-fibers

Transmission

- Nerve supplying the dermatome
- Dorsal root ganglion
- Dorsal horn spinal cord
- Glutamate AMPA receptor
 - Protective, healthy nociception
- Glutamate NMDA receptor
- Substance P NK1 receptor
 - Windup or central nociception

Primary/segmental modulation

- Spinal reflex
 - Withdrawal reflex
- Interneuron
 - Sensory processing
 - Inhibition
- Interneuron
 - Segmental/gate processes
- Most noxious afferent -> lamina II
 - Lamina I also but excitatory
 - Proprioception too
- NGF plays a role in central excitatory
- WDR fiber (conversion neurons) muti-receptive -> lamina IV -> RAS/thalamus
- Primary processing is spinal with control

NGF!!

Projection

- Spinal tracts
 - Processed sensory info to brain
- Two primary tracts for nociception
 - Spinothalamic tract
 - Sensory discriminative
 - Spinoreticulothalamic/spinobulbar tract
 - Sensory indiscriminate
- Descending pain modulation
 - PAG
 - Rostral Ventral Medulla (RVM)

Supra-segmental modulation, perception

- Conscious components
 - Pain
 - Memory
 - Emotions
 - Avoidence
- Consciousness does not exist during GA
 - Pain not exist during GA
 - What about the rest of nociception?

- Unconscious component
 - Autonomic
 - PNS
 - SNS
 - Neurochemical
 - Norepinephrine
 - Serotonin
 - Pain modulation
 - PAG (-> release norepi, serotonin, endocannabinoids)
 - RVM (final say)

Perception

• Cortex

- Perception
- Thalamus
 - Integration
- Cingulate gyrus
 - Behavior, Emotions
- Periaqueductal gray
 Modulation
- Locus coeruleus
 Arousal, vigilance
- Reticular formation
 Antinociception, integration
- Hippocampus • Memory
- Hypothalamus • ANS
- Amygdala
 Fear, anxiety

louisdondald.com

Temporal Classification of Pain

- Acute
 - Hours to days
 - Pain that follows injury, disappears w/ healing
 - Self-limiting
- Chronic
 - Weeks to months
 - Pain that persists beyond normal healing time when non-malignant in origin
 - Chronic pain is NOT long-standing acute pain!!

"Chronic pain is acute pain that was ineffectively treated..."

When good pain goes bad

- Hypersensitization
- Peripheral sensitization/wind-up
- Central sensitization/wind-up
- Allodynia
 - Peripheral
 - Central

- Three major pathophysiological process occur that help magnify the process of nociception both peripheral and central.
 - Loss of inhibitory complexes
 - Recruitment
 - Neuroplasticity

Peripheral sensitization/wind-up

Inflammatory processes

- Under physiological conditions inflammation tends to be self-limiting and not insidious to the body.
- Eventually -> repair
- Anti-inflammatory modalities help this process
- With extreme forms of inflammation, inflammation that is not well managed, the inflammation becomes self-generating.
- Self-generating inflammation leads to a state of hypersensitization
- Repair is delayed
- Peripheral hypersensitivity/allodynia

Peripheral sensitization/wind-up

- Loss of inhibitory complexes
 - Mediators that help regulate inflammation are overwhelmed
- Recruitment
 - Increase numbers of pro-inflammatory complexes, cells, etc.
- Neuroplasticity
 - AB nociceptors -> c-nociceptors fibers
 - Silent fibers -> c-nociceptor fibers
- Peripheral NGF plays significant role

Central sensitization/wind-up

- Peripheral sensitization increases the frequency and degree of afferent noxious impulses delivered by c-nociceptor fibers bombarding dorsal horn of spinal cord.
- Neuropathic injury
 - Does not necessarily require peripheral sensitization

Central sensitization/wind-up

Neuroplasticity

- Glutamate-AMPA switch to Glutamate/Subst P-NMDA/NK1.
- Inhibitory interneurons switch to enhancing.
- Central NGF enhances this transition
- Loss of inhibition
 - Loss of inhibitory interneurons
 - PAG zone decreases inhibition

• Recruitment

 Primary spinal cord segment recruit adjacent spinal segments
 -> hypersensitized

What happens if ...?

- Peripheral Wind-up
 - Injury
 - Inflammatory soup
 - Silent nociceptors
 - Conversion AB fibers
 - NGF
 - Hyperalgesia
- AMPA-Glutamate
- NMDA-glutamate

- Central Wind-up
 - Subst-P NK1
 - NGF
 - Loss of inhibition
 - Multi-segmental allodynia
- Neuropathic nociception

Maladaptive/chronic/windup

Peripheral wind-up Centralized wind-up Chronic pain Somatovisceral reflexes Viscerosomatic reflexes Maladaptive/dysfunctional pain QOL Debilitating

Preemptive	Intra-op	Post-op
Pain score Preemptive analgesia Opioids NSAIDs Etc. Local-regional anesthesia	Intermittent injections Opioids Constant rate infusions FLK HLK MLK DLK LK Continued locoregionals	Immediate Post op analgesia Patient welfare First two weeks Long-term care Patient no longer needs analgesia Rehabilitation AP LLL

Preventive analgesia

Multimodal Analgesia

Pain management: Pharmacological

- Opioids
 - Inhibit glutamate release at dorsal horn of SC
 - Effects in brain; decrease symp tone
- Alpha 2 agonists
 - Like opioids
 - Profound effects in brain
 - Muscle relaxation
- NMDA antagonists
 - Dorsal horn SC
 - Some effect the brain (ketamine)
 - Includes amantadine

- Local anesthetics
 - Fast Na+ channel blocking drugs
 - Local and regional anesthesia
- NSAIDs
 - COX inhibitors
 - Peripheral inflammation
- Misc
 - Benzodiazepines
 - NOT analgesics
 - Muscle relaxation
 - Gabapentin
 - Maropitant

MAC.....the reality!!!

• Degree of stimulus

- MAC awake
- MAC for intubation
- MAC no movement
- MAC-BAR
- MAC-BAR = MAC-NM?
- Iso > 2%
- Sevo > 2.5%

References

- Advances in understanding nociception and neuropathic pain, Ewan St. John Smith, J Neurol. 2018; 265(2): 231-238.
- Sensitization of Pain-Modulating Neurons in the Rostral Ventromedial Medulla after Peripheral Nerve Injury, Jonathan D. Carlson, Jennifer J. Maire, Melissa E. Martenson, and Mary M. J Neurosci. 2007 Nov 28; 27(48): 13222-13231
- Advances in neuroscience imply that harmful experiments in dogs are unethical, Jarrod Bailey and Shiranee Pereira, J Med Ethics. 2018 Jan; 44(1): 47-52
- Causes and consequences of inadequate management of acute pain, Raymond Sinatra, Pain Med. 2010 Dec;11(12):1859-7
- Nerve Growth Factor Signaling and Its Contribution to Pain, Philip A Barker, Patrick Mantyh, Lars Arendt-Nielsen, Lars Viktrup, and Leslie Tive, J Pain Res. 2020; 13: 1223-1241.

Questions & Discussion

IF YOU AREN'T FALLING

YOU AREN'T LEARNING